CALCULATION OF THE MOTION OF RELATIVISTIC
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In calculating high-current relativistic beams of charged particles moving in electromagnetic
fields, it is necessary to take account of the effect of the electric and magnetic self-fields
products by the beams themselves. This effect has been modeled on a computer {1, 2], The
present paper describes numerical algorithms contained in the KSI-BESM compiling system
{3] which permit the inclusion of a broad class of relativistic problems, taking account of the
magnetic field of currents flowing inthe metal parts of the device being calculated, and also
problems with virtual cathodes.

The axisymmetric problems considered are formulated as follows. The potential ¢ of the electric field
satisfies Poisson's equation :

Ap = —4np {1)

in the closed domain G=G + T', where p is the space charge density, and A =% 5-’1(:: ;;) -+ -‘% -is the Laplace op-
erator. Boundary conditions of the first or second kind are specified for the potential on portions of the
boundary of I'. Internal boundaries between two media with different dielectric constants may occur in the
computational domain G. The equation of motion of a particle of rest mass m and charge e is

2(ym%) =B+ L1v 5, )

where E and H are the electric and magnetic field inte 51ties, r =(x, y) is the radius vector, v is the velocity

of the particle, c is the velocity of light, ¥ =(1—v¥c?'/? is the relativistic factor, and v = lvl, It is assumed
that H =Hg +Hg, where H, is the external magnetic field and Hg is the magnetic self-field produced by the beam
and currents in metal. The current density § of the particle beam under study at the entrance boundary of the
computational domain is either specified by a function of coordinates or is determined in the process of solv~
ing the problem by the "3/2" law [4], assuming that the condition

divi=20 3
is satisfied over the whole domain.

We circumscribe a rectangle about the computatmnal domain G and construct within it a net Oy formed
by the lines x=xj and y= Yj- Let hX =Xj44 —Xi, and h =YVi+ Y be the steps of the net, and » — sup max (#%, BY).

Equation (1) and the boundary condmons on the potent1a1 ¢ are approximated on Qp by a system of dlfference
equations [4]. For example, for internal nodes (i, j) € G}, which are not close to the boundaries the difference
equations have the form
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where ®i,j are the approximate values of the potential at the nodes of Q. The system of difference equations
is solved by iteration methods which involve a succession of finer and finer mesh nets [5-7]. In order to solve
the problem on the net Qy, an auxiliary problem is first solved on a coarser net Qhy (hy > h) with a smaller
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number of nodes. The solution obtained is interpolated at the nodes of &} and used as the initial approximation
for the iterative process for finding the final solution on the net Q. Theoretical estimates and the solution of
practical problems show that the solution can be obtained to a given accuracy by this approach with many fewer
arithmetical operations than are required in a calculation on a fixed net.

The equations of motion (2) are integrated numerically by the following difference scheme:

—ALS ST Yot Vpit 1
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2 x

X ((Vp+1 +Vp)'Ep_L_L)——2——-) -+ Vp, Tpiyg=Tp + Atp
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where Atp is the step of the numerical integration, and the subscript p +1/2 indicates that the quantity is evalu-
ated at the midpoint rp+;/4 =rp +(Atp/2)vy,, B=v¥c?, with v given by vp+1/,=(1 _(i"_“’cgﬂ/_z 4 1)“‘)"2, 0> 0.

This difference scheme has an error 0(At?), where Af = max Af,.
. p

The space charge is calculated by the "current tube" method [8, 9], which is an economical variant of the
widely knowh method of "large" particles.

In order to solve the so-called self-consistent problem defined by Eqgs. (1)-(3) with initial and boundary
conditions, an iterative process with respect to space charge is constructed. A process of the following form
is commonly used:

Agrtt = —dqipn, pm = @p™! + (1 — o)™, n=1,2,.., (5)

- where p™! is the value of the space charge obtained by calculating the trajectories in the field with the po-
tential ¢P; 0<w =1 is the relaxation parameter of the successive approximations. Another possible algorithm
of the process of successive approximations with respect to space charge is given in [10].

We consider in more detail the algorithm for calculating the magnetic self-field of a beam of charged
particles. In the equations of motion we take account only of the azimuthal component of the magnetic self-
field of the beam

H\l’ = ZI/CR,

where I is the current through a cross section of radius R, assuming the other components are negligibly small,
We note that in the absence of an external magnetic field the self-field of the beam contains only the azimuthal
component, so that for this case the magnetic field of the beam is taken into account completely in the al-

gorithm,

The magnetic field of the beam is calculated by separating out of domain G a subdomain G' into which
the beam under study penetrates. In subdomain G' a rectangular nonuniform net QY, is constructed with Q% =
{x=x'i, y=y']', i=0,1, ..., Ny, j=0,1, ..., Nz} with steps ﬁ{‘=x'i+1—x'i, ﬁ:{:yj'ﬂ—y'j. We divide the initial beam
front, i.e., the boundary where the particles enter the computational domain, into N current tubes (trajec-
tories), each of which carries a current I (k=1, 2, ..., NT). Suppose for definiteness that the beam travels

in the direction of the y axis and rp and rllg +1 are calculated points on the k-th trajectory obtained in the inte-

gration of the equatiﬁns of motion by scheme (4), where rlg and rkH €G. If a line y =y'j of the net S?'h is found
such that Yp =Yy =yp+; (or Yp+i Sky'j Sykp) the current of the trajectory Iy (or —Ik) contributes at the (i, j)-th
Totr1 T Tp

node closest to the point .xh s = 1t is important to choose the integration step small enough so that

the trajectories do not intersect several lines of the net during one step, If a line of the net is not intersected,
the current of the trajectory does not contribute.

At the first step oftheintegration (rlg is the initial point) the current of the trajectory is added to all the
nodes of the net which have coordinates y'j =yp and lie on the line x=x% closest to the point rg.

If a trajectory is incident on any metal surface, it is determined whether this is a surface of the cathode
part of the device, If this is the case, i.e., if rlSH is an external point belonging to the cathode region, the cur-
rent of the trajectory Iy is subtracted from the nodes (x4, y'j) (i=const, j =j,), where (x'j, ¥%;) is the node closest
to the point rE. If the external point rlﬁﬂ belongs to the anode region, the current of the trajectoryis added to
all the nodes (x%, y%j) (i=const, j=j,). Thus, after calculating all the trajectories at the nodes of the net (i,
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TABLE 1

v 3 2,5 4 Vs 5
Ara 00190 | 00258 0,0337 00427 | 00527
Ar 00173 | 00236 0,0312 00394 | 0,0476
8, % 89 85 74 &i 96
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j) € @Y, a complete spatial pattern is obtained for the distribution of currents Ijj of the system under
study.

The values of the magnetic self~field of the currents at points x, yYj are calculated from the expression

(Hyi; = ——=r—.

ez,

In solving the self-consistent problem in parallel with the process of successive approximations with
respect to space charge (5), a relaxation of the magnetic field

Hy=oHp' + (1 —o) H3™!

is carried out, where HY ={ (Hn)ij} is the vector whose components give the values of the magnetic field at
the nodes of Qy, w is the same quantity as in (5), and H%i is the magnetic field produced by the n-th approxi--

mation currents, It is assumed that H{L =0, The trajectories of the n-th approximation are calculated in the

field HO ! , where the value of (H¢)p+1/2 in Eq. (4) is found by linear interpolation of the values of (lelp 1)
the nearest nodes:
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2
where (i, j) is the node determined by the inequalities 0 5xp+1/2"X" = h{‘, 0=Yp+1/27YY Shjjl.

The algorithms considered are contained in the KSI-BESM library of compiling systems [3]. The present
system permits the calculation of steady and unsteady {11] beams of charged particles of various signs and
masses, taking account of the initial energy and angular distributions, the phenomena of secondary emission
{12], and the electromagnetic self-field of the beam,

A number of problems were solved using the KSI-BESM system. The error of the algorithms described
above was investigated by calculating the spreading of a beam of relativistic particles in an equipotential space,
The following model was taken for the numerical calculation. A monochromatic electron beam with a current
I= 1kA having aninitial radius Ry=0,05cm and a velocity v,= =cy~! (y2=1)!1/2 (y =4) enters a cylinder of radius
R=1.5 cm and length =6 cm, The condition 8¢/8n =0 for the potential is specified at the surface where the
particles enter and on the axis of the cylinder. At the other end of the cylinder and on its lateral surface ¢ =
1500 kV. The beam moves along the axis of the cylinder which coiné¢ides with the y axis of the coordinate
system, The net Qy is uniform along the y axis with my =120 nodes. Along the x axis there are two zones
with boundaries x3=0, x,=0.7 cm, X,=1.5 cm containing =28 and IX=10 nodes The net QY, has the following
parameters: y,=0, y; =6 cm, my=120, x,=0, X =0.45 cm, x,=0.8 cm, If=9, I¥=14, The beam was modeled
by 60 trajectories. Table 1 compares the values of the increments in the radius of the beam Ar obtained by
numerical calculations with the approximate analytical values Arp [13] given by

3-40%Iy?

Ara = wapery

(I is the current in amperes, and all the remaining quantities are in cgs units) for certain values of the y
coordinate.

It is clear from Table 1 that the relative error of the spreading of the beam &§=( |Ar—Ara|)/Ary is no
more than 10%. The relative error of the calculation of the radius does not exceed 1%. This accuracy is ade-
quate for most practical problems,

A calculation was performed with Belomyttsev [14] for a beam of particles in the diode space (Fig. .

1) emitted from the surface ABCD with a space charge limited current density given by the "3/2" law. The
boundary conditions are: ¢ =0 on ABCD, 8¢ /on=0 on AE, OD, FK, and OK (the axis of symmetry of the system),
and ¢ =¢,on EF, It was required to find the minimum value of the external magnetic field H, for which the

" beam electrons do not strike the walls of the drift chamber EF, For ¢,=2.5 MeV and H, =10 kG a beam having
an initial width of 0.5 cm is broadened to 0.8 cm, so that the gap between the beam and the chamber wall is 0.2
cm. At the system exit the electrons of the inner layer have an energy of 2 MeV and those of the outer layer
2.3 MeV; i.e., the energy spread of the beam electrons is 15%. The maximum velocities of the electrons in
this case reach c/3.

In calculating strong relativistic beams in the absence of external magnetic fields, the azimuthal mag-
netic field of the beam and the currents in metal exerts an appreciable effect on the behavior of the particles.
This situation occurs, e.g., in problems of calculating magnetic insulation in the transmission of strong pulsed
currents in vacuum coaxial lines [15], and also in focusing a high-current electron beam in a diode.

A diode node of the "Akvagen" accelerator [16] was calculated (Fig. 2). The cathode surface is a seg-
ment of a sphere AB joined to a conical surface CD. The radius of curvature of the connecting portion BC is
0.4 cm. The calculation was performed for zero potential of the cathode ABCD and a potential of the anode

EFG equal to 1 MeV,

The calculation of the trajectories shown in Fig. 2 indicates an appreciable focusing of electrons under
the influence of the azimuthal magnetic self-field of the beam. The angular spread of the electrons at exit is
60°. The calculated value of the total diode current is 100 kA, which is in good agreement with the value 130
kA estimated theoretically by the relativistic analog of the ng/o" law [17].
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