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In calculat ing h igh-cur ren t  re la t iv is t ic  beams of charged par t i c les  moving in e lec t romagnet ic  
fields, it is n e c e s s a r y  to take account of the effect of the e lec t r ic  and magnetic self-f ie lds  
products  by the beams themselves .  This effect  has  been modeled on a computer  [1, 2]. The 
p resen t  paper  descr ibes  numer ica l  a lgor i thms contained in the KSI-BESM compiling sy s t em 
[3] which permi t  the inclusion of a broad  c lass  of re la t iv is t ic  p rob lems ,  taking account of the 
magnetic  field of cu r ren t s  flowing inthe metal  pa r t s  of the device being calculated,  and also 
problems with vir tual  cathodes.  

The ax i symmet r i c  problems considered are  formulated as follows. The potential q~ of the e lec t r ic  field 
sat isf ies Po i s son ' s  equation 

hop = --4rip (1) 

�9 i o f  a \  ~__ in the closed domain G = G * F,  where p is the space charge  density, and a = ~  ~x ~)-I-" au*y -is the Laplace op- 

e r a to r .  Boundary conditions of the f i rs t  o r  second kind a re  specified for the potential on port ions of the 
boundary of F .  Internal  boundaries between two media with different die lectr ic  constants  may occur  in the 
computational domain G. The equation of motion of a par t ic le  of res t  mass  m and charge e is 

d [ dr~ e 
~Tra ~7) = eE -~ 7- iv X H], (2) 

where  E and H are the e lec t r ic  and magnetic field intepsit ies,  r =(x, y) is the radius vector ,  v is the veloci ty  
of the par t ic le ,  c is the veloci ty of light, T =(1-v2/c2) 1/2 .is the re la t iv is t ic  factor ,  and v = Iv l .  It is a s s u m e d  
that H =He +I-Is, where H e is the external  magnetic field and I-I s is the magnetic self-f ield produced by the beam 
and cur ren t s  in metal .  The cur ren t  density ] of the par t ic le  beam under study at the entrance boundary of the 
computational domain is e i ther  specified by a function of coordinates  or  is determined in the p roces s  of solv-  
ing the p rob lem by the "3/2" law [4], assuming that the condition 

is satisfied over  the whole domain. 

div j =  0 (3) 

We c i r cumsc r ibe  a rectangle about the computational domain G and const ruct  within it a net ,~h formed 
by the lines x=x i  and y = y j .  Let h~ =x i+ t -x i ,  and h y =Yj+I-Yj be the steps of the net, and h = sup max(h~,hy). 

x,y t , j  

Equation (1) and the boundary conditions on the potential ~ are  approximated on ~2 h by a sys tem of difference 
equations [4]. For  example, for internal  nodes (i, j) E ~h which are  not close to the boundaries the difference 
equations have the fo rm 

2z.__L 2x i ~ %~-1. i 2s , i \ 

~h~_~(h~_~--i-h~) '~ . . . .  ~"~+~h~(h~_,+h~) ~-hy._~(h~j_, ~.h'J) hy (h~_, -hJ) h~ ,h~* ~ -  ., . .  r 

where q~i,j a re  the approximate  values of the potential at the nodes of ~h" The sys tem of difference equations 
is solved by i terat ion methods which involve a success ion  of f iner and f iner  mesh  nets [5-7]. In o rde r  to solve 
the problem on the net ~h, an auxil iary problem is f i r s t  solved on a c o a r s e r  net ~h 1 (h 1 > h) with a smal le r  
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number  of nodes.  The solution obtained is in terpola ted at the nodes  of ~h and used as the initial approximation 
for  the i t e ra t ive  p r o c e s s  fo r  finding the final solution on the net ~h- Theore t i ca l  es t imates  and the solution of 
p r ac t i ca l  p rob lems  show that the solution can be obtained to a given accuracy  by this approach with many fewer  
a r i thmet ica l  operat ions  than a re  r equ i r ed  in a calculat ion on a f ixed  net.  

The equations of motion (2) a re  in tegra ted  numer ica l ly  b y  the following di f ference scheme: 

( [ ]1 
( . )  -- +.+. + +. , - + Atp ~ (41 • (vp+t -4- vp)'Ep_~.t ~- vp, rp+l ----- rp :,: 

where  Atp is the step of the numer ica l  integration,  and the subscr ip t  p +1 /2  indicates that the quantity is  evalu-  

ated at the midpoint rp+l~ =rp  +(Atp/2)Vp, fl =v2/c ' ,  with v given by Vp+i/2--(1 _(l,l~__p+,/, _+_ i ) - ' ) ' " ,  c~ . ~ > 0 .  

This d i f ference scheme has an e r r o r  0(Ate), where  At = maxAtp. 
P 

The space charge  is ca lcula ted by the " c u r r e n t t u b e "  method [8, 9], which i s  a n  e c o n o m i c a l  v a r i a n t  of the 
widely known method of " la rge"  pa r t i c l e s .  

In o r d e r  to solve the so , ca l l ed  se l f -cons is ten t  p rob lem defined by Eqs .  (1)-(3) with initial and boundary 
conditions, an i te ra t ive  p r o c e s s  with r e spec t  to space charge  is const ructed.  A p ro ce s s  of the following fo rm 
is commonly  used: 

A~'~+ 1 = --4ztp", p~ = ~p,,1 A- (1 -- o)p ~-1, n = t,  2 . . . . .  (5) 

�9 where  p n J  is the value of the space charge  obtained by calculat ing the t r a j e c to r i e s  in the field with the p o -  
tential  qn;  0< w E1  is the re laxat ion  p a r a m e t e r  of the success ive  approximations.  Another possible algori thm 
of the p r o c e s s  of success ive  approximations with respec t  to space charge  is given in [10]. 

We cons ider  in more  detail  the a lgor i thm for  calculat ing the magnetic se l f - f ie ld  of a beam of charged 
pa r t i c l e s .  In the equations of motion we take account only of the azimuthal  component of the magnetic se l f -  
f ield of the beam 

H,~ = 2I/cR, 

where  I is  the cu r r en t  through a c ros s  sect ion of  radius R, assuming the o ther  components are  negligibly small .  
We note that in the absence of an ex te rna l  magnetic f ield the se l f - f ie ld  of the beam contains only the azimuthal 
component,  so that fo r  this  case  the magnet ic  f ield of the beam is taken into account complete ly  in the al-  
g o r i t h m .  

The magnetic  field of the beam is calculated by separat ing out of domain G a subdomain G' into which 
the beam under study pene t ra t e s .  In subdomain G' a rec tangula r  nonuniform net ~ is cons t ructed  with ~ ,  = 
{x=x ' i ,  y=y ' j ,  i=0 ,  1 . . . . .  N1, j =0, 1 . . . . .  N2} with steps l~X=x'i+l-x'i ,  h j  =Yj+I-Y'j. We divide the initial beam 
front ,  i .e . ,  the boundary where  the pa r t i c l e s  en te r  the computational  domain, into NT cur ren t  tubes ( t ra jec -  
tories},  each of which c a r r i e s  a current~ I k ( k = l ,  2 . . . . .  NT). Suppose for  defini teness  that the beam t rave ls  
in the d i rec t ion  of the y axis and r~ and rk+t  a re  calculated points on the k-th t r a j e c t o r y  obtained in the inte-  

grat ion of the equations of motion by scheme (4), where  r k and rpk+l E G. If a line y=y ' j  of the net ~ is found 
(or the current of the trajectory (or- k) contributes at the (i, j)-th such that 

k h 

node c loses t  to the point ~ rv+t + rp It is impor tant  to choose the integrat ion step small  enough so that 
�9 r p A ' t / 2  ~ 2 " 

the t r a j e c t o r i e s  do not in t e r sec t  s eve ra l  l ines of the net during one step.  If a line of the net is not in tersec ted ,  
the cu r r en t  of the t r a j e c t o r y  does not contr ibute .  

At the f i r s t  step o f the in t eg ra t i on  (rp k is the initial point) the cur ren t  of the t r a j e c t o r y  is added to all the 
nodes of the net which have coordinates  yVj ~ypk and lie on the line x =x' i c loses t  to the point rp k. 

If a t r a j e c t o r y  is incident on any metal  sur face ,  it is de te rmined  whether  this is a surface  of the cathode 
pa r t  of the device.  If this is the case ,  i .e . ,  if rpk+~ is an externa l  point belonging to the cathode region, the cu r -  
rent  of the t r a j e c t o r y  I k is subt rac ted  f rom the nodes (x'i, y'j) (i =const ,  j ~Jl) ,  where  (x' i, y'j) is the node c loses t  
to the point rp  k. If  the externa l  point r~+t  belongs to the anode region, the cu r ren t  of the t r a j e c t o r y  i s added to 
all the nodes (x'i, Y'j) (i =const ,  j ->Ji). Thus, a f te r  calculat ing all the t r a j e c t o r i e s  at the nodes of the net (i, 
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J) s ~ a ,  a complete spatial pat tern  is obtained for the distribution of cur rents  Iij of the sys tem under 
study�9 

The values of the magnetic self-f ie ld  of the cur rents  at points x'i, y j  are  calculated f rom the expression 

{ 
2 ~ Isj 

In solving the self-consis tent  problem in paral le l  with the p rocess  of successive approximations with 
respect  to space charge (5), a relaxation of the magnetic field 

H~ ~, = o~H~ '~ + (I -- ~) H ~-~.~, 

is ca r r i ed  out, where Hh~ e ={ (H~)H} is the vector  whose components give the values of the magnetic field at 
the nodes of f~}l, ~ is t samJqu~antity as in (5), and I-I~, I is the magnetic field produced by the.n-th approxi-,  

mation cur ren ts .  It is assumed that H~ = 0�9 The t ra jec tor ies  of the n-th approximation are calculated in the 
.n-1 field I-I~ -1, where the value of (H~)p+l/2 in Eq. (4) is found by l inear interpolation of the values of (I~fr at 

the neares t  nodes: 
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y_. t --yj 
n--i n--i n ,  [ (u,  ) , j §  ),Jl, 

< x O<yp+l /2-y~_<hY.  where (i, j) is the node determined b y t h e  inequalities 0 ~Xp+l/2-x'  i - h i ,  

The algori thms considered are  contained in the KSI-BI~SM l ib ra ry  of compiling sys tems [3]. The present  
sys tem permi t s  the calculation of steady and unsteady [11] beams of charged  par t ic les  of various signs and 
masses ,  taking account o f  the initial energy  and angular distributions, the phenomena of secondary  emiss ion 
[12 ], and the e lect romagnet ic  self-f ield of the beam. 

A number of p rob lems  were  solved using the KSI-BI~SM system.  The e r r o r  of the algori thms descr ibed 
above was investigated by calculating the spreading of a beam of relat ivis t ic  par t ic les  in an equipotential space.  
The following model was taken for  the numerica l  calculation. A monochromat ic  e lect ron beam with a cur rent  
I = i kA having an initial r ad ius  R 0 = 0.05 cm and a velocity v 0 = c3'-I  (3,2_ 1)1/2 (7 = 4) enters  a cyl inder  of radius 
R =1.5 cm and length l =6 cm. The condition 0~v/On=0 for  the potential is specified at the surface where the 
par t ic les  enter  and on the axis of the cyl inder .  At the other  end of the cyl inder  and on its la tera l  surface ~v = 
1500 kV. The beam moves along the axis of the cyl inder  which coin6ideS with the y axis of the coordinate 
sys tem.  The net f~h is uniform along the y axis with my=120  nodes .  Along the x axis there  are  two zones 
with boundaries x0=0 , x 1 =0.7 cm, x2=1.5 cm containing l~=28 and l~=lO nodes. The net f~'h has the following 
pa r ame te r s :  Y0=0, Yl =6 cm, my=120,  x0=0, x I =0.45 cm, x 2 =0.8 cm, l~=9, l~=14. The beam was modeled 
by 60 t r a j ec to r i e s .  Table 1 compares  the values of  the increments  i n  the radius of the beam Ar  obtained by 
numer ica l  calculations with the approximate analytical values Ar A [13] given by 

3. tO~eIy ~ 
Ar A -~ m ('f~e)sRo 

(I is the cur rent  in amperes ,  and all the remaining quantities are  in egs units) for  cer ta in  values of the y 
coordinate.  

It is c lea r  f rom Table 1 that the relat ive e r r o r  of the spreading of the beam 6 =( I A r - A r A ]  ) / A t  A is no 
more  than 10%. The relat ive e r r o r  of the calculation of the radius does not exceed 1%. This accuracy  is ade- 
quate for  most  p rac t i ca l  p rob lems .  

A calculation was pe r fo rmed  with Belomyttsev [14] for a beam of par t ic les  in the diode space (Fig. 
1) emit ted f rom the surface ABCD with a space charge limited cur rent  density given by the "3/2" law. The 
boundary conditions a re :  ~o =0 on ABCD, acp/0n =0 on AE, OD, FK, and OK (the axis of symmet ry  of the system),  
and ~0 =~P0 on EF.  It was required  to find the minimum value of the external  magnetic field Iq z for  which the 
beam electrons do not s t r ike the walls  of the drift  chamber  EF.  For  ~00=2.5 MeV and H z =10 kG a beam having 
an initial width of 0.5 cm is b roadened to  0.8 cm, so that the gap between the beam and the chamber  wall is 0:2 
cm. At the sys tem exit the e lec t rons  of the inner layer  have an energy  of 2 MeV and those of the outer layer  
2.3 MeV; i.e., the energy spread of the beam electrons is 15~. The maximum velocit ies of the electrons in 

this case reach c /3 .  

In calculating s trong relat ivis t ic  beams in the absence of external magnetic fields, the azimuthal mag-  
netic field of the beam and the cur ren t s  in metal  exer ts  an appreciable effect on the behavior  of the par t ic les .  
This situation occurs ,  e.g., in p rob lems  of calculating magnetic insulation in the t r ansmiss ion  of s t rong pulsed 
cur ren t s  in vacuum coaxial lines [15], and also in focusing a h igh-cur ren t  e lectron beam in a diode. 

A diode node of the "Akvagen" acce le ra to r  [16] was calculated (Fig. 2). The cathode surface is a seg-  
ment of a sphere  AB joined to a conical  surface CD. The radius of curvature  of the connecting portion BC is 
0.4 cm. The calculation was pe r fo rmed  for  zero  potential of the cathode ABCD and a potential of the anode 

EFG equal to 1 MeV. 

The calculation of the t r a jec to r ies  shown in Fig.  2 indicates an appreciable focusing of electrons under 
the influence of the azimuthal  magnetic  self-f ield of the  beam. The angular  spread of the electrons at exit is 
60 ~ The calculated value of the total diode current  is 100 kA, which is in good agreement  with the value 130 
kA es t imated theoret ical ly  by  the relat ivis t ic  analog of the "3/2" law [17]. 
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